Expression and intracellular localization of an SCN5A double mutant R1232W/T1620M implicated in Brugada syndrome.

نویسندگان

  • Ghayath Baroudi
  • Said Acharfi
  • Chantal Larouche
  • Mohamed Chahine
چکیده

Brugada syndrome is an inherited cardiac disorder caused by mutations in the cardiac sodium channel gene, SCN5A, that leads to ventricular fibrillation and sudden death. This study reports the changes in functional expression and cellular localization of an SCN5A double mutant (R1232W/T1620M) recently discovered in patients with Brugada syndrome. Mutant and wild-type (WT) human heart sodium channels (hNa(v)1.5) were expressed in tsA201 cells in the presence of the beta(1)-auxiliary subunit. Patch-clamp experiments in whole-cell configuration were conducted to assess functional expression. Immunohistochemistry and confocal microscopy were used to determine the spatial distribution of either WT or mutant cardiac sodium channels. The results show an abolition of functional sodium channel expression of the hNa(v)1.5/R1232W/T1620M mutant in the tsA201 cells. A conservative positively charged mutant, hNa(v)1.5/R1232K/T1620M, produced functional channels. Immunofluorescent staining showed that the FLAG-tagged hNa(v)1.5/WT transfected into tsA201 cells was localized on the cell surface, whereas the FLAG-tagged hNa(v)1.5/R1232W/T1620M mutant was colocalized with calnexin within the endoplasmic reticulum (ER). These results indicate that a positively charged arginine or lysine residue at position 1232 in the double mutant is required for the proper transport and functional expression of the hNa(v)1.5 protein. These results support the concept that loss of function of the cardiac Na(+) channel is responsible for the Brugada syndrome. The full text of this article is available at http://www.circresaha.org.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel mechanism for Brugada syndrome: defective surface localization of an SCN5A mutant (R1432G).

The SCN5A gene encodes the alpha subunit of the human heart sodium channel (hH1), which plays a critical role in cardiac excitability. Mutations of SCN5A underlie Brugada syndrome, an inherited disorder that leads to ventricular fibrillation and sudden death. This study describes changes in cellular localization and functional expression of hH1 in a naturally occurring SCN5A mutation (R1432G) r...

متن کامل

Enhanced Na(+) channel intermediate inactivation in Brugada syndrome.

Brugada syndrome is an inherited cardiac disease that causes sudden death related to idiopathic ventricular fibrillation in a structurally normal heart. The disease is characterized by ST-segment elevation in the right precordial ECG leads and is frequently accompanied by an apparent right bundle-branch block. The biophysical properties of the SCN5A mutation T1620M associated with Brugada syndr...

متن کامل

Novel SCN5A mutation (Q55X) associated with age-dependent expression of Brugada syndrome presenting as neurally mediated syncope.

BACKGROUND An association between Brugada syndrome and neurally mediated syncope has been described. Although mutations in SCN5A have been identified in Brugada syndrome, the genetic link between Brugada syndrome and neurally mediated syncope has not been determined. OBJECTIVES The purpose of the study was to clinically and genetically characterize a man with recurrent syncope that originally...

متن کامل

Cardiac Na(+) channel dysfunction in Brugada syndrome is aggravated by beta(1)-subunit.

BACKGROUND Mutations in the gene encoding the human cardiac Na(+) channel alpha-subunit (hH1) are responsible for chromosome 3-linked congenital long-QT syndrome (LQT3) and idiopathic ventricular fibrillation (IVF). An auxiliary beta(1)-subunit, widely expressed in excitable tissues, shifts the voltage dependence of steady-state inactivation toward more negative potentials and restores normal g...

متن کامل

Brugada syndrome disease phenotype explained in apparently benign sodium channel mutations.

BACKGROUND Brugada syndrome (BrS) is an arrhythmogenic disorder that has been linked to mutations in SCN5A, the gene encoding for the pore-forming α-subunit of the cardiac sodium channel. Typically, BrS mutations in SCN5A result in a reduction of sodium current with some mutations even exhibiting a dominant-negative effect on wild-type (WT) channels, thus leading to an even more prominent decre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 90 1  شماره 

صفحات  -

تاریخ انتشار 2002